Lecture 16 Still More Carbonyl Chemistry

March 24, 2019

Thanks to the Orbitals

Ok...let's do some synthesis as a "warm up"

The Wittig Reaction

Preparation of Ylides

The ylid is made in a two step process. The first step is a nucleophilic substitution reaction that Forms a *phosphonium salt*

Preparation of Ylides

In the second step, the phosphonium salt is treated with a strong base in order to remove a proton from the carbon bonded to phosphorus.

Triphenylphosphine oxide

This substance is very stable

Nearly insoluble in many solvents, i.e. pentane

Oral, mouse: LD50 = 1380 mg/kg; Chemistry 328N

Wittig Reaction

• More examples

Don't plan to control the E/Z ratio...you get generally get a mixture

The Wittig Reaction

- See... sometimes you can control it
- we won't try to do that in this class
- You can learn this in the graduate synthesis class
- The reaction has broad "scope"

100% E isomer

An Example: Write the structure of the products

Synthesis.. benzene and 3 carbon starting materials

Synthesis

Oxidation and Reduction

- Aldehydes are oxidized to carboxylic acids by a variety of oxidizing agents and it is possible to do some selective reduction reactions
- To calculate the oxidation state, assume that oxygen is "always" -2 and hydrogen is "always" +1

Chemistry 3281

Reduction

 Aldehydes can be reduced to 1° alcohols and ketones to 2° alcohols. In addition, the C=O group can be reduced to a -CH₂- group

Metal Hydride Reduction

- The most selective reagents for the reduction of aldehydes and ketones are NaBH₄ and LiAlH₄
 - both are sources of hydride ion, H:-, a very powerful nucleophile

NaBH₄ Reduction

 The key step in metal hydride reduction is transfer of a hydride ion to the C=O group to form a tetrahedral carbonyl addition compound

Closer look at borohydride reductions

B-O bond is much stronger than B – H bond This is the driving force for the reaction...

NaBH₄ Reduction

 Reductions with NaBH₄ are most commonly carried out in aqueous methanol, in pure methanol, or in ethanol

 $\begin{array}{r} O \\ RCH + NaBH_4 \\ \hline CH_3OH \end{array} \qquad RCH_2OH \end{array}$

Examples: Sodium Borohydride

Lithium aluminum hydride LiAIH₄

Examples: Lithium Aluminum Hydride

Aldehyde This is "overkill"...just use safer NaBH₄

O || CH₃(CH₂)₅CH 1. LiAlH₄ diethyl ether 2. H₂O

 $CH_3(CH_2)_5CH_2OH$

Ketone

neither NaBH₄ or LiAlH₄ will reduce isolated double bonds

LiAlH₄
diethyl ether
H₂O

OH

Selectivity in Reduction

 LiAlH₄ reduces any and all carbonyl compounds to the corresponding alcohols

NaBH₄ only reduces aldehydes and ketone

Catalytic Reduction

- Catalytic reductions are generally carried out from 25° to 100°C and from 1 to 5 atm H₂
- Carbon-carbon double bonds can be selectively reduced using Rhodium catalysts

Hydrogenolysis of benzylic carbonyls

- Palladium catalysis of hydrogenation reduces only benzylic C-O bonds to methylene groups.
- Benzyl ethers, aldehydes and alcohols are also reduced to the corresponding methylene group

Clemmensen Reduction

- Refluxing an aldehyde or ketone with amalgamated zinc in concentrated HCI <u>converts</u> the carbonyl group to a methylene group
- Limitations...??

Wolff-Kishner Reduction

• If aldehydes or ketones are refluxed with hydrazine and KOH in a high-boiling solvent, the reaction converts carbonyls into methylenes....

Diethyleneglycol KOH, H₂NNH₂, Δ

Chromic Acid Oxidations

 $\mathbf{K}_{2}\mathbf{Cr}_{2}\mathbf{O}_{4} \qquad \mathbf{K}_{2}\mathbf{Cr}_{2}\mathbf{O}_{7}$

 Hexavalent chromium compounds (including chromium trioxide, chromic acids, chromates, chlorochromates) are toxic and carcinogenic.
Chemistry 328N **CrO₃, H₃O+** Chromium trioxide

Chromic acid is often made "in situ" (that is, in the reaction flask) through the addition of acid to sources of chromium (such as chromate salts). The large number of possible chromium sources (and acids!) can make this confusing, but it is chromic acid that is the active reagent.

Chemistry 328N

Oxidation at Benzylic Positions

KMnO4 in Base also works

Selective Chromate Oxidations

- Chromic acid and heat Oxidizes benzylic positions bearing at least one hydrogen to acids
- Jones Reagent (H₂CrO₄ in acetone) takes primary alcohols to acids and secondary alcohols to ketones...The acetone keeps the reaction cool. Jones oxidation does not oxidize benzylic positions even with a hydrogen.
- PCC (pyridinium chlorochromate) is weaker yet, it only oxidizes primary alcohols to aldehydes (!) and seconday alcohols to ketones.

The Jones Oxidation Examples

$\frac{\text{PCC Oxidations}}{\text{C}_5\text{H}_5\text{N} + \text{HCI} + \text{CrO}_3 \rightarrow [\text{C}_5\text{H}_5\text{NH}][\text{CrO}_3\text{CI}]}$

Chemistry 328N

Selective Oxidation Reactions

- Jones Reagent (H₂CrO₄ in acetone) takes primary alcohols to acids and secondary alcohols to ketones
- The Tollen's Test Ag(NH₃)₂OH...the silver mirror reaction is a qualitative test for aldehydes and an efficient but expensive way to make acids form aldehydes

Tollens Test

 $2 \operatorname{AgNO}_{3} + 2 \operatorname{NaOH} \longrightarrow \operatorname{Ag}_{2}O(s) + \operatorname{H}_{2}O + 2 \operatorname{Na}^{+1} + 2 \operatorname{NO}_{3}^{-1}$ $\operatorname{Ag}_{2}O(s) + 4\operatorname{NH}_{3} + \operatorname{H}_{2}O \longrightarrow 2\operatorname{Ag}(\operatorname{NH}_{3})_{2}^{+} + 2\operatorname{OH}^{-} \quad \text{(Totally Dissolved)}$ $2(\operatorname{Ag}(\operatorname{NH}_{3})_{2}^{+}\operatorname{OH}^{-}) + \operatorname{R}^{\circ} \operatorname{H}_{R} \longrightarrow 2\operatorname{Ag} + \operatorname{RCOO}^{-}\operatorname{NH}_{4}^{+} + \operatorname{H}_{2}O + 3\operatorname{NH}_{3}$ $\operatorname{Chemistry 328N}$

Ok...more synthesis

From benzene, any thing with less than 3 carbons, and any other reagents that do not become part of the structure.

